THE CORTICAL ORGANIZATION OF SYNTACTIC PROCESSING IN AMERICAN SIGN LANGUAGE

William Matchin

Mayberry Laboratory for Multimodal Language Development Laboratory for Human Brain Activity Mapping (Halgren lab)

Glossary of terms & brain map

 Clear version can be found at <u>www.williammatchin.com/extras</u>, "Language Neurobiology" button on bottom left

 Limited number of printed handouts; if already well-versed in brain & language, please share

What is language?

What is language? Two views

1. An complex form of auditory-vocal learning & communication

What is language? Two views

An complex form of auditory-vocal learning & communication

(structure) (meaning)

A computational system, syntax and semantics, expressed through speech

Language is modality independent

Bernard Bragg's Pantomime of "steal"

Sign vs. Pantomime

The ASL Sign STEAL

Syntax in sign languages

Spatial agreement

c. YOU-GIVE-HIM/HER d. I-GIVE-YOU-ALL

Hierarchical syntactic structure

 Non-manual syntactic features

_____foc/rc MOUSE CHASE CAT

'The mouse that chased the cat died.'

DIE

Illustration of grammatical non-manual markers

What is language? Two views

- 1. An complex form of visual-manual learning & communication
- 2. A computational system, syntax and semantics, expressed through sign

Auditory-centric models of language & brain

Auditory-centric models of language & brain

Ventral stream: sound to meaning

Structural sensitivity in the language network

- Natural: all real words
- Jabberwocky: open-class words replaced with nonwords
- Syntax-sensitive regions should show increased activity for bigger structure
- Semantics-sensitive regions should only show this effect for natural stimuli

Real-time structural sensitivity

Open node tracking: the bigger the structure at each word, the more brain activity

Regression model: number of open nodes at each word

Sign language & the brain

- ASL generally activates similar regions as spoken/ written languages
- ASL in deaf native signers: right-lateralized?
- Language laterality: syntactic processing?

Written English sentences > sequences of consonants

Hearing native English speakers

Deaf native ASL signers

ASL sentences > nonsign gestures

Hearing native English speakers

Deaf native ASL signers

Present study

- Investigate syntactic processing in ASL in deaf native signers using fMRI
- Look for correlation between structural complexity and brain activity
- Parametric design: use multiple levels of structure,
- Compare with findings in spoken/written languages

Stimuli

6-word lists (6W)

AWARD BELT SHOVEL BOY PIG POTATO

Video duration: ~4-6 seconds

2-word sentences (2S)

'the family travels', 'the dessert is all gone',

'the letter is sad'

6-word sentences (6S)

TEACHER GIVE-OUT HW TEND-TO NOT POPULAR

'a teacher who gives out homework tends not to be popular'

Stimuli

6-word lists (6W)

2-word sentences (2S)

6-word sentences (6S)

Max. constituent size: 1 word

Max. constituent size: 2 words

Max. constituent size: 6 words

FAMILY TRAVEL DESSERT ALL-GONE LETTER SAD TEACHER GIVE-OUT HW T

AWARD BELT SHOVEL BOY PIG POTATO

(pseudo non-manual gestures included to help control motion dynamics)

'the family travels', 'the dessert is all gone', 'the letter is sad' TEACHER GIVE-OUT HW TEND-TO NOT POPULAR

'a teacher who gives out homework tends not to be popular'

Presentation/Task

Still face with cross

- Blocks of 3 stimuli in a row (18 signs), ~20 seconds per block
- End of block: picture memory probe
 - 50% of time: picture matches one of the signs
- Control condition: watch still face of signer
 - Fixation cross every 4 seconds (press button)
- 4 scanning blocks, structural MRI acquired

Behavioral data

- Structure enhances perception & recall
- Brener, 1940; Miller et al., 1951; Marks & Miller, 1964

• Error bars: standard error of mean, subject effects removed (Cousineau, 2005)

Phonological processing & lexical access: 6W > still face

Syntactic processing: linear contrast of structure

Overlap of syntactic processing in English & ASL

Matchin et al. (2017 - fMRI): 6 word sentences > 6 word lists (written)

Experiment 2: native deaf and hearing L2 signers

- fMRI: four-word sentences > four-word lists
- Preliminary results: voxel-wise p < 0.05 (one-tailed, uncorrected)
- Sentence task: semantic anomalies

List task: detect animal words

• 5 deaf native signers

4 hearing L2 signers

Overlap of phonological/lexical & syntactic processing

Conclusions: the revised ventral stream

Future directions

• Timecourse of combinatorial processing in ASL using MEG

Experiments on ASL phonology (fMRI, MEG)

Sentence production in ASL

Acknowledgements

- Mayberry lab
- Halgren lab
- Lau lab (University of Maryland)

Grant # R01DC012797

Subjects

- 13 deaf native signers of ASL
- Right-handed
- No neurological disorder

Preprocessing

- Slice-timing correction
- Motion correction
- Morphing to Talairach template
- Spatial smoothing (6mm FWHM)
- Conversion to % signal change

Analysis

- Single subject deconvolution regression analysis
- Group analysis using AFNI's 3dANOVA2 function
- Contrast weights for linear effect of constituent size (same as Pallier et al., 2011):
 - 6W, 2S, 6S: [-2 -1 -3]
- Voxel-wise p < 0.005 (one-tailed)
- Cluster-corrected for multiple comparisons (p < 0.05) using AFNI's 3dClustSim and –acf option

Syntax in sign languages

- Deaf native signers
- Activation in posterior temporal lobe & posterior IFG
- Left-lateralized effects
- No ATL activity
- Unbalanced stimulus materials

• Sentences > sign lists

Language selectivity in the language network

Sentences > word lists

Sentences:

THE DOG CHASED THE CAT ALL DAY LONG

Word lists:

BECKY STOP HE THE LEAVES BED LIVE MAXIME'S

Language selectivity in the language network

Sentences > word lists

Easy Stroop

Phonology in sign languages

- Phonological parameters
 - Minimal pairs
- Phonotactic constraints
- Syllable and prosodic structure

Handshape

la. DANGEROUS

1b. INTERESTING

Location

le. SCOLD

1d. SEND

Movement

1d. ESCAPE

le. BETRAY

Sandler, 2012

Neuroimaging of sign language

Overlap between BSL & English

Dorsal & ventral streams: auditory & visual

Monkey (macaque)

Temporal lobe: 'what'

Complex "auditory objects"

Sp VCo RSp RVCo

Sp VCo RSp RVCo

4S > 4W: Deaf native

4S > 4W: L2

Aphasia & the language network

 Atrophy maps in three variants of primary progressive aphasia

Lexical-semantic access: speech & sign

Leonard et al., 2012

Aphasia in sign languages

Boston Diagnostic Aphasia Examination (adapted for ASL)

LHD: left hemisphere damage

RHD: right hemisphere damage

 Left hemisphere damage: Good spatial processing

 Right hemisphere damage: Impaired spatial processing

Speech intelligibility

Fedorenko et al. (2011): tasks

Inconsistent structural effects in IFG

Phonological coding in superior temporal cortex

ASL syntax: 6S > 6W

Uniquely human STS morphology

Cortical expansion: evolution & development

Human vs. macaque

Adult vs. infant

Language and the brain

Conceptual combination (ATL)

Lexical-Syntactic objects (pSTS)

Event representation (AG)

Phonological systems

Matchin, Faculty of Language, 2016 Matchin & Hickok, in preparation

Broca's area & word production

Overlap of word production in ASL & English

• ASL > English

Syntactic entrainment

Transitional probability

Ding et al. (2015)